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Some of the most frequent misconceptions about axiomatic quantum physics are 
discussed with the aim of clarifying their true significance, taking Piron's 
approach as conceptual framework. In particular, we deal with the following 
topics: the wrong identification of Piron's questions and Mackey's questions, and 
some curious alleged empirical consequences; the role of propositions as suitable 
equivalence classes of questions, their partial order structure, and the paradoxical 
consequences of the erroneous assignment to questions of some lattice properties 
involving propositions; the logical and the empirical purport of some "negative" 
theorems; the standard Hilbert space model of the theory and the consequent 
"metaphysical disasters" related to some identifications, which are peculiar of this 
model. A controversy between Foulis-Piron-Randall and Hadjisavvas-Thieffine- 
Mugur-Sch/ichter is analyzed on the basis of the proposed Hilbert space model 
(in which Piron's questions are realized by Hilbertian "effects," i.e., linear 
bounded operators F such that �9 which clarify the different point of 
views. As an example, we treat the unsharp localization operators in L2(N). 

1. I N T R O D U C T I O N  

This  work  is m o t i v a t e d  by recent  experiences o f  ours  (pr ivate  communi -  
ca t ions  and  discussions,  referee repor ts ,  and  so on) in which some miscon-  
cept ions  and  misunde r s t and ings  a b o u t  fundamen ta l  aspects  o f  ax iomat ic  
q u a n t u m  physics  (QP)  have been the cause of  several  and  different,  bu t  in 
general  no t  correct ,  cri t iques.  Since these cont rovers ies  are ra ther  f requent  
and  repea ted ,  we have found  it necessary to clarify some points ,  so tha t  
all the terms o f  the discussions  a b o u t  these a rguments  can be correct ly  
fo rmula ted .  
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In particular, we refer to the Jauch-Piron (JP) approach to the axio- 
matic foundations of QP presented in Piron, (1964, 1972, 1976a,b, 1977, 
1978, 1981), Jauch (1968, 1971), and Jauch and Piron (1969, 1970). Like 
any axiomatic formalized theory, it is grounded on a system of primitive 
notions, the choice of a set of  specific axioms, and some interpretation rules 
which translate the primitive notions into concepts about a physical domain. 
We emphasize that an axiomatic formalized theory is constructed on the 
basis of a formal language L in which a set of signs is precisely defined (in 
particular, individual constant signs, individual variable signs, m-predicate 
signs, and n-functor signs; all derived notions, expressions, and sentences, in 
particular all the axioms, of the theory will be finite sequences of  the admitted 
language), without reference to any concrete mathematical structure (e.g., 
the one involved in the Hilbert space theory). 

1.1. JP Question-Preparation Approach to QP 

With reference to the JP approach, the concepts of "questions" and 
"preparations," with a binary relation of "question true in a preparation," 
are assumed as primitive notions of the theory. 

We recall that, according to Piron (1976a), "we shall call a question 
every experiment leading to an alternative of which the terms are 'yes' or 
'no' ."  It is worth noting that in Piron's view: "schematically a question 
consists of a measuring apparatus, instructions for its use and a rule interpret- 
ing the possible results in terms of 'yes' or ' no ' "  (Piron, 1977). In this 
sense one can speak of "physical" or "empirically definable" questions; no 
reference is made to any possible realization of the theory (e.g., to the 
standard orthodox Hilbert space model). 

Thus, Piron's theory is based on the following statement: 

"When the physical system has been prepared in such a way that the physicist 
may affirm that in the event of an experiment the result 'yes' is certain, we shall 
say that the question is true" (Piron, 1976b). 

Moreover, in another work JP stress that: "For  the time being we are not 
concerned with the question how we can produce systems for which a given 
yes-no experiment is known to be 'true' nor how we obtain this knowledge" 
(Jauch and Piron, 1969). 

Therefore, a formal theory describing the JP approach to QP is based 
on the primitive notions of preparation and question, formally described by 
(mathematically uninterpreted) signs x, y . . . .  and a, t ,  . . . .  respectively, 
and a primitive binary predicate sign T involving preparation-question 
pairs; the formula T(x, a) is physically interpreted as "question a is true 
when the physical system is prepared in x." 
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One of the problems about any formal theory is its (relative) "coher- 
ence," which is solved if a concrete mathematical model of the theory is 
given ("the theory is coherent if mathematics is such"), This means that a 
realization of the language L on a concrete mathematical structure W must 
be given (in particular, individual constant and variable signs are represented 
as elements and variables in ~ ,  m-predicate signs as m-argument concrete 
relations on ~f, and n-functor signs as concrete mappings from ~ n to J r ) ,  
in such a way that all the axioms to the theory are validated in the model, 
i.e., their ~-realizations turn out to be theorems of the mathematical ~ -  
structure. 

It is possible to show that a realization of JP axiomatic theory, based 
on the mathematical structure of a complex Hilbert space ~,~, can be given 
(Cattaneo et al., 1988). Precisely, preparations are represented by one- 
dimensional subspaces (I) of the Hilbert space ; r  questions by linear, 
bounded, self-adjoint operators F on ~ such that O_<F<_$; the binary 
predicate T by the binary relation 

"Tae(@, F) iff peeP, Fq= (p", (i.e., iff (pe(I)/{0_}, (F(01 ~0)/LIq~tl 2= 1). 

In this Hilbertian realization some "hidden" axioms and all Piron's C, 
P, A axioms are validated (i.e., are translated into statements which are 
theorems of the Hilbert space theory), concluding that this Hilbertian reali- 
zation turns out to be a model of the JP approach to QP. 

1.2. JP Properties and Mackey Questions, Related Misconceptions 

In JP theory an important role is played by the partially ordered set of 
all propositions induced by the set Q of questions. A proposition is any 
equivalence class of questions with respect to the equivalence relation: 
"a, fl~ Q, a ~  fl iff T(x, a) <=> T(x, fl)." Thus, the notion of proposition is a 
derived notion in the theory, and from the axioms it follows that the set of 
all such propositions A ~ := ~ / ~  has a structure of atomic orthomodular 
complete lattice with covering property (structure named propositional sys- 
tem by Piton). 

In our opinion, the source of many misconceptions is due to the follow- 
ing two facts. As regards JP theory, Piron (1976a) shows the following 
Representation Theorem. 

Theorem. Every irreducible propositional system A ~ of rank at least 
equal to 4 may be realized by a vector space V constructed on some division 
ring with involution ~ and endowed with a definite Hermitian form (gen- 
eralized Hilbert space in Piron's terminology). 
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To be precise, 

(P) The partially ordered set of all propositions in quantum mechanics 
is isomorphic to the partially ordered set of all closed subspaces 
of a generalized Hilbert space. 

On the other hand, Mackey (1963) assumes the following Axiom VII: 

(M) The partially ordered set of all questions in quantum mechanics 
is isomorphic to the partially ordered set of all closed subspaces 
in a separable, infinite-dimensional Hilbert space. 

Hence, it is evident that if in Piron's Representation Theorem the ring H is 
the complex numbers C (and so V is a complex Hilbert space ~ ) ,  Mackey's 
questions are identifiable with the propositions of the JP approach (which are 
equivalence classes of JP questions). 

Table I sums up this discussion. 
With respect to these considerations, we do agree with an extension of 

Foulis and Randall's point of view according to which orthodox (Hitbert 
space) quantum mechanics has encouraged people to some identifications 
peculiar to the Hilbert space mathematical structure, and this has been a 
"metaphysical disaster" (Randall and Foulis, 1983). 

In our experience we have encountered some quite rough "metaphysical 
disasters," which can be summarized in the following types. 

1. The lattice properties of propositions (owing to the identification 
with Mackey questions) are attributed to Piron's questions (which have no 
structure of a partially ordered set) ; consequently, a lot of curious, but in 
any case wrong, critiques have been produced (the "theoretical" collapse of 
the set of questions to the two trivial elements @ and 4, the alleged invalid- 
ation of de Morgan's laws for this supposed lattice, and so on). 

2. The empirical analysis of usual experimental situations (leading to 
the conclusion that there is no experimental yes-no device represented by 

Table I. JP Properties ~ 

Jauch-Piron Jg-realization 

~r 
JP Questions Q ~ Q(4/t ~ ) 

JP Propositions 5g= (Q/~) .~"-re.~ ~162162 ~ ) M Questions 

" Q ( ~  ) = Hilbert space linear operators such that @ _< FN 1 ; M/(Jg) = poset 
of closed subspaces of  the Hilbert space Jg;  g(J/t ~) =corresponding poset 
of orthogonal projections; qb=canonical mapping associating to any JP 
question the proposition generated by it. 



Axiomatic Quantum Physics 1297 

orthogonal projections of standard orthodox quantum mechanics) and the 
identification between Piron's questions and Mackey's questions (represen- 
ted by orthogonal projections) both lead to the conclusion that ~ 
speaking, one probably has few or no (Piron) questions at all." 

Some more refined critiques have been produced by Hadjisavvas et al. 
(1980), Thieffine, et al. (1981), and Thieffine (1983) based on some "nega- 
tive" theorems; the arguments of these critiques have given rise to a subse- 
quent controversy with Foulis and Randall (1984; Hadjisaves and Thieffine, 
1984; see also Foulis et al., 1983; Randall and Foulis, 1983). We will discuss 
in detail these points, too. 

2. JP QUESTION-PREPARATION SYSTEM 
(THE "PHYSICAL SCHEME") 

The approach of Jauch and Piron (JP) to quantum physics (QP), as 
presented mainly in Piron's papers, concerns a system of "questions" and 
"proposition" (henceforth, qp-s), characterized by the assent to the "pro- 
gram of realism," i.e., without making use of the notion of probability, 
according to the statement: "we avoid the notion of probability ( - . . ) .  If 
one introduces probability at this stage of axiomatics one has difficulties of 
avoiding the criticism of Einstein that a state is not an attribute of an 
individual system but merely the statistical property o f  a homogeneous 
ensemble of similarly prepared identical systems" (Jaucl~ and Piron, 1969). 

To be precise, some metatheoretical statements, formulated as follows, 
are premised. 

The physical system. 

(MTI) By a physical system we mean a part of real world thought of 
as existing in space-time and external to the physicist. 

The program of  realism. 

(MT2) (The aim of physics is) to give a complete description of each 
individual system as it is in all its complexity. 

Having thus established an epistemological standpoint, the basic concept 
of"question" is introduced by observing that "the affirmation of the physicist 
in regard to a physical system are susceptible of being regulated by experi- 
ment. This control consists in general of a measurement the result of which 
is expressed by 'yes' or 'no' " (Piton, 1976a). 

(BC1) We shall call a question every experiment leading to an altern- 
ative of which the terms are "yes" or "no". 



1298 Cattaneo and Nistic6 

Thus a question is both 
(1) a description of an experiment to be carried out on the physical system 

considered; 
(2) a rule enabling us to interprete the possible results in terms of "yes" or 

"'no". 
More schematically a question consists of 

(i) a measuring apparatus, 
(ii) instruction for its use, 

(iii) a rule interpreting the possible result in terms of "yes" or "no" (Piron, 
1977). 

I t  is wor th  no t ing  tha t  in this view a ques t ion  is an experiment consis t ing 
o f  a mac roscop i c  measuring apparatus, object ively given and  technical ly  
descr ibab le ;  in this sense one can speak o f  a "phys i ca l "  or  "empi r i ca l ly  
def inable"  quest ion.  The  mac roscop ic  a r r angemen t  measur ing  a ques t ion  
can in terac t  with ind iv idua l  samples  o f  the phys ica l  system in such a way  
" t h a t  a direct ,  object ively t raceab le  [macroscop ic  a l ternat ive]  effect occurs  
or  does  no t  occur  (e.g., coun te r  signal,  a c loud-chamber - t r ack ,  b lackening  
o f  a p h o t o g r a p h i c  plate ,  e tc . )"  (Ludwig,  1971); " the  presence o f  the  effect 
is conven t iona l ly  t aken  as the answer  'yes '  whereas  its absence is ' n o ' "  
(Mielnik ,  1976). This  po in t  o f  view can  be defined as the "realism of the 
laboratory." W e  stress tha t  in this d iscuss ion we have cons idered  exper iments  
o f  single test, i.e., in which a single ind iv idua l  sample  o f  the phys ica l  system 
under  examina t i on  is tested by  a cer ta in  a p p a r a t u s  (which measures  a ques-  
t ion)  y ie ld ing as a result  one o f  the two a l te rna t ive  answers,  e i ther  "yes"  or  
" n o "  ( " I f  the resul t  is 'yes, '  the system has passed  the test" (Piron,  1976a).) 

A s imilar  pos i t ion  can  be found  in K.  K r a u s :  

Another empirical fact is the existence of so called measuring instruments, which 
are capable of undergoing maeroscopically observable changes due to ("triggered 
by") their interaction with single microsystems. The simplest type of measuring 
instrument is one on which just a single change may be triggered. For instance, 
an originally charged counter may be found either still charged or discharged, 
after it has been exposed to an electron ( . . . ) .  (The result will depend, loosely 
speaking, on the efficiency of the counter, and on whether or not the electron 
"hits" it.) ( . . . )  one usually defines the result of a single measurement to be "yes" 
if the effect occurs, and "no" if the effect does not occur. ( . . . )  Assume now a 
[production of] a single microsystem, which then interacts with an observing 
apparatus, leading in turn either to the occurrence or the non-occurrence of the 
corresponding effect on the apparatus. Call this a "single experiment" ( . . . )  
(Krauss, 1983). 

2.1. Three Physical  Definitions 

In the JP app roach ,  the set o f  ques t ions  is equ ipped  with an ar t icula te  
s t ruc ture  accord ing  to some defini t ions (named  by P i ron) :  
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(PD1) 

(PD2) 

(PD3) 

A trivial question exists which we denote as / ,  and which con- 
sists in nothing other than measuring anything (or doing 
nothing) and stating that the answer is "yes" each time. 
If  a is a question, we denote by a v the question, called the 
opposite or the inverse of a, obtained by exchanging the terms 
of the alternative. Thus, if the result of a (for an individual 
sample) is "yes," then that of a v is "no"  and vice versa. It is 
clear that a ~ can be measured with the same physical equipment 
as that used for the measurement of a. 
If  { ai} is a family of questions, we denote by zai the question, 
called the product, defined in the following manner: (i) one 
chooses at random one of the ai in the family (measuring appa- 
ratus), (ii) one performs the corresponding experiment (on an 
individual sample of the physical system) (instruction for its 
use), and (iii) one attributes to za~ the answer thus obtained 
(a rule interpreting the results). 

JP affirm that, as a consequence, one can prove the following results: 

(a~) v= a and (Zai) v :  Za~ (2.1) 

2.2. A Binary Predicate between "Preparation" and ~ 

Now, JP introduce the following definition of the binary predicate 
"true" involving the two notions of "preparation" and "'question." 

(BP1) "When the physical system has been prepared in such a way 
that the physicist may affirm that in the event of an experiment 
the result 'yes' is certain, we shall say that the questien is 'true' 
(Piron, 1976b). 

We note that the word "prepared" in (BP1) implicitly introduces, besides 
the basic concept of question, the basic concept of preparation of physical 
objects. 

(BC2) A preparation is realized by macroscopic apparatus which can 
produce both single individual samples and ensembles of indivi- 
dual samples under well-defined and repeatable conditions. 

A question can be tested on each sample giving as a result of the measurement 
one of the two alternative, "yes" or "no"  (single test of a question). To the 
preparation as a whole it is possible to attribute the value "true" if the result 
"yes" is certain (elementary experiment of a pair "preparation-question"). 
This occurs whenever "the samples of an ensemble prepared in the same way 
have given rise to the answer yes with certainty. In this case we have the 
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right to claim that  new single samples  o f  the system prepared  in the same 
way will give rise to the answer  'yes '  " (Aerts,  1983). 

Ano the r  s ta tement  by  Piron clarifies very well the role o f  p repa ra t ion  
appa ra tu s :  

Let us suppose that we have a beam of photons. The experiment which consists 
in placing a polarizer in the beam defines a question. In fact it is possible to 
verify, by despatching photons one by one, that this experiment leads to a plain 
alternative: either a photon passes through, or it is absorbed. We shall define the 
[question ar ] by specifying the orientation of the polarizer (the angle q~ ) and 
interpreting the passage of a photon as a "yes." Experience shows that, to obtain 
a photon prepared in such a way that "ao is true," it is sufficient to consider the 
photons which have traversed a first polarizer oriented at this angle [preparation 
x~!]. But experiment also shows that it is impossible to prepare photons 
[preparation x~,, d? v~ d?' (modulo zc)] capable of traversing with complete certainty 
a polarizer oriented at the angle q~ ( . . . )  (Piron, 1976a). 

2.3. An Improvement in JP qp-s 

A fur ther  b inary  predicate  between prepara t ions  and quest ions can be 
in t roduced which has not  been considered by  JP. 

(BP2) When  the physical  system has been p repared  in such a way that  
the physicist  m a y  affirm tha t  in the event o f  an exper iment  the 
result " n o "  (resp., "yes" )  is certain for  the question a (resp., 
a~), we shall say tha t  the quest ion a is "false ."  

The following rule is now a necessary consequence of  the physical  meaning  
a t t r ibuted to (BP1) and (BP2) start ing f rom the level o f  descript ion of  a 
single individual  object. 

(TF)  There  is no p repa ra t ion  with respect  to which a quest ion is 
s imul taneously  true and false. 

In general, it m a y  happen  that  some p repa ra t ion  could exist for  a quest ion 
such that  this latter is neither true nor  false; hence, a third b inary  predicate  
can be introduced.  

(BP3) When  the physical  sys tem has been prepared  in such a way  that  
in the event o f  an exper iment  neither the result "yes"  nor  the 
result " n o "  is certain, we shall say that  the question is 
indeterminate.  

In the o r thodox  JP approach ,  the predicate  " fa l se"  and " inde te rmina te"  are 
not  explicitly considered and this has been a first source o f  misunders tanding.  
Indeed,  we have two levels o f  descript ion:  the first one, which pertains to 
single individual samples,  leading to the al ternatives "yes"  or " n o "  in execut- 
ing a single test o f  a quest ion;  the second one, which pertains to prepara t ions  
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of individual samples, leading to the three alternative values, "true," "false," 
or "indeterminate" in executing a yes-no elementary experiment with any 
question. 

According to binary predicates (BP1)-(BP3), physical definitions 
(PD 1)-(PD3) must be modified into the following ones involving the second 
level only. 

(A1) 
(A2) 

(A3) 

The trivial question I is always true (and so never false). 
The question a v is true whenever a is false and is false whenever 
a is true. 
The question zai is true iff any ai is true and is false iff any ai is 
false. 

2.4. JP Derived Definitions 

Then, the following theoretical definitions, expressed in terms of (PD 1)- 
(PD3) and (BR1), are introduced in the JP approach. 

(DF1) The inverse question I v, denoted by O, is called the absurd 
question. 

(DF2) If  the physical system is prepared in such a way that whenever 
a is true, one is sure that/3 is true, too, then the question a is 
said to be stronger or less than the question ]3 and this is 
symbolized by a</3. 

(DF3) If  two questions a and/3 satisfy relations a<fl and /3<  a, we 
shall call them JP equivalent and we denote it by a~/3. This 
relation is an equivalence relation. 

(DF4) Let a be a question. We denote by a = [a] ~ the class of all 
such questions which are JP equivalent to a and we call it a 
proposition. Thus [a] ~ := {fl: f l~ a). 

(DF5) The set of all propositions will be denoted by 5 ~ 
(DF6) If  a is true, then eve ry /3~a  is true, toot Hence we say that 

proposition a is true iff any (and therefore all) of/3ea are true. 
If a proposition a is true, we shall call it aproperty of the system 
and we shall say that the system has actually the property a. 
So there is a one-to-one correspondence between propositions 
and properties. 

(DF7) The equivalence classes of questions ! and O define the certain 
and the absurd propositions 1 and 0, respectively. 

(DF8) If  one has a~a, fleb, and a-< fl, then property a is stronger 
than property b, symbolized by a ~ b. 

Remark 1. Whatever be the preparation, the certain property associated 
to proposition 1 is always actual, whereas the absurd property associated to 
proposition 0 is always potential. 
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2.5. FR Quasi-Ordering and FR Propositions 

In our modified version of JP qp-s we can add the following further 
definitions. 

(DF9) 

(DFIO) 

( D F l l )  

(DF12) 
(DF13) 

(DF14) 

(OV15) 

A question a is in FR quasi-ordering with question/3, written 
a </3, iff whenever a is true, one can affirm that/3 is true and 
whenever/3 is false, one can affirm that a is false. 

If two questions a and/3 satisfy relations a < /3  and/3-< a, we 
shall call them FR equivalent and we denote it by a~-/3. 
Let a be a question. We denote by p = [a]_~ := {/3:/3---a} the 
class of  all such questions which are FR equivalent to a and 
we call it an FR proposition. 
The set of  all FR propositions will be denoted by ~ .  
If  a is true (resp., false) then every/3"~- a is true (resp., false), 
too. Hence we say that the FR proposition p is true (resp., 
false) iff any (and therefore all) of the/3~p are true (resp., 
false). 
The FR equivalence classes of  questions I and O define the 
certain and the absurd FR propositions 1FR and 0FR, 
respectively. 
If one has a~p, fl~q, and a-</3, then the FR property p is 
stronger than the FR property q, symbolized by p ~ q. 

Since two FR equivalent questions are JP equivalent, too, any proposition 
is, in its turn, decomposable into a partition of  FR propositions. Note 
that in the orthodox JP approach, binary predicates (BP2) and (BP3), and 
definitions (DF9)- (DF15)  are not explicitly formulated. 

2.6. JP States 

We give now a definition of "state" according to the JP way of thinking: 

(DF16) The state associated to a preparation procedure x is the set 
o-(x) of  all proposition [or properties, according to (DF6)] 
actually true [or certain] for the system prepared in x. 

This definition matches with the following statement by Piron: 

If one given system has been prepared [according to a well-defined preparation 
procedure x] in such a way that we can affirm that in the event of the experiment 
[of a proposition a tested by any question a~a] the expected result would be 
certain, we will say that the corresponding property [associated to the proposition 
a] is an actual property of the system [prepared in x], in opposition to the other 
properties which [in x] are only potential (Piron, 1981). 
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In  this case we have the right ~:o claim that  any singIe individual sample 
prepared in x actually possesses all the properties corresponding to the 
proposi t ions  o f  the state o-(x), in agreement  with the following statement:  
"a  modified definition o f  state can be meaningfully applied to an individual 
system which represents all the properties (or elements o f  reality)" (Jauch 
and Piron, 1969). 

Thus,  the definition o f  state 

is meant to imply that the state is a property of an individual system and not of 
a statistical ensemble of such system. This was not possible in previous definitions 
of the state which involves probability (or probability amplitude), tndeed, a 
probability is meaningful only with reference to a statistical ensemble. The defini- 
tion we have given above refers only to true propositions, that is to what we have 
called properties of the system, and there is no objection in attributing these 
properties to an individual system. (. �9 .) We attribute to every system a state in 
the sense defined above quite independent whether the state has been measured 
(Jauch and Piron, 1969)~ 

According to this point  o f  view 

it has become possible to clarify the notion of state and that of physical property. 
The latter notion is closely related to that of element of reality introduced by 
Einstein, Podolsky and Rosen in the discussion of their paradox which bears 
their names. It is significant that these three authors come to the conclusion that 
the notion of state as used in quantum mechanics cannot meaningfully be attri- 
buted to an individual system and that it is a statistical concept, applicable only 
to suitably chosen assembly of systems (Jauch and Piron, 1969). 

As to this assertion, we quote  the following conclusion:  " f r o m  this definition 
it is clear that  according to Einstein's concept  an element of  reality is nothing 
else than an actual p roper ty"  (Piron, 1981). 

3. THE FORMALIZED THEORY OF 3P  Q P - S  
( T H E  " S Y N T A C T I C  S C H E M E " )  

The formula t ion  o f  JP qp-s outlined in the foregoing section is partially 
expressed in the colloquial physical language. We contend that  between the 
two levels o f  description, the one relative to single individual samples and 
the one relative to preparat ions,  the latter is more  relevant f rom the physical 
point  o f  view (statements about  single individuals being either empirical or  
derived f rom statements o f  this second level). We have stressed that  the JP 
approach  to qp-s is founded on two primitive undefined kinds o f  notions, 
"p repara t ions"  and "quest ions ,"  and a primitive undefined binary relation, 
"ques t ion true in a prepara t ion."  In  this section, and referring to this second- 
level, we present an axiomatic formalized theory  o f  JP qp-s giving the syntac- 
tic scheme of  the JP approach  to the foundat ion  o f  quan tum physics. 
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In order to avoid formal complications, but without any lost in correct- 
ness, we give aforrnalprerealization of the language of JP formalized theory 
based on the semiformal language of usual set theory and class logic. To 
be precise, the language of JP formalized theory consists of the following 
alphabet: 

(al) One kind of individual variable signs x,y, z , . . .  (with indices, 
if necessary) realized as variables ranging over individuals in a 
nonempty abstract set S. 

(a2) One kind of individual variable signs a,/3, 7, �9 .. (with indices, 
if necessary) realized as variables ranging over individuals in a 
nonempty abstract set Q. 

(a3) One individual constant (0-argument functor) sign realized as a 
constant element I of Q; two functorial signs, a 1-argument func- 
tor v realized as a mapping Q~--~Q and an infinitary-argument 
functorial sign 7c realized as a mapping ~ ( Q ) ~  Q, where ~(Q) 
is the power set of Q. 

(a4) One 2-argument predicate sign realized as a binary relation 
T~_Sx Q. 

(a5) Usual classical logical connectives, A, V, --n, ~,  ~ ,  for conjunc- 
tion, disjunction, negation, material implication, and biimpli- 
cation, and the two quantifiers 3 and V, the existential quantifier 
and the universal quantifier. 

This alphabet of the JP qp-s will be denoted by 

Ljp=(S,  Q,N(Q); L ~, rr; 73 

The set of all terms and of all wffs based on language Ljp is constructed 
starting from the alphabet in the usual way. As customary, we will sometimes 
omit parentheses or employ other abbreviations in our wffs if there is 
no danger of confusion. As first derived notion, we define the 2-argument 
predicate sign 

(D-BP2) F(x, a):= T(x, a ~) 

The "rules of interpretations," which transform the formal language into a 
language about an empirical domain of physical objects, are the following: 

(RI-1) The elements of the set S are interpreted as describing prepara- 
tions of the physical system. 

(RI-2) The elements of the set Q are interpreted as questions which 
one can be set up on the physical system. 

(RI-3) The wff T(x, a) is physically interpreted as the statement 
"question a is true in preparation x" [i.e., (BP1)]. 
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(RI-4) The wff F(x, a) is physically interpreted as the statement "ques- 
tion a is.false in preparation x" [i.e., (BP2)]. 

We assume as basic specifie axioms of JP qp-s the following wffs. 

Axiom 1. (Vx), T(x, I) 
Axiom 2. (Va)(Vx), (F(x, a v).~ T(x, a)) 
Axiom 3. (V{ai})(Vx), (T(x, Jrai)~:~(Vai)T(x, ai)) 

/x (F(x, ;zai) ~ ('r at)) 
Axiom 4. (Ya)(Yx),-q(T(x, a)AF(x, a)) 

Remark 1. Note that the (A1)-(A3) as modified versions of the "phys- 
ical definitions" ((PD1)-(PD3)) and condition (TF) are the interpretations, 
via the above rules (RI-1)-(RI-4), of these "basic" specific axioms about JP 
qp-s theory. Moreover, it is possible to define the derived binary predicate 
"indeterminate" as follows: 

(D-BP3) U(x, a) iff -q(T(x, a) v F(x, a)) 

For any fixed question a t  Q, we introduce: 

The certainly-yes domain of a: Sl(a):= {x6S: T(x, a)}. 
The certainly-no domain of a: So(a):= {xeS: F(x, a)}. 

Using these new definitions, the above axioms can be restated in the follow- 
ing form. 

Axiom 1'. &(I)=S 
Axiom 2'. Ya, So(a v) = Sl(a) 
Axiom 3'. Y{Cti}, S l ( / ra i )  = ~ S l ( a i )  and So(lrai)  ---- ~ So(a i )  

Axiom 4'. Va, Sl(a) ~ So(a) = (3 

The formalized theory of JP qp-s is based on the following definitions. 

(D1) (The absurd question) O:=U. 
(D2) (JP quasi-order for questions) a < [3 iff T(x, a) implies T(x, fl), 

i.e., Sl( a) ~_S,(fl). 
(D3) (JP equivalent questions) a~f l  iff (a</3) and (fl<a), i.e., 

S1 ( a )  : S 1 (/3). 
(D4) (Propositions) [a]~ := {fl: fl~ a} = {fl: Sl(fl) = Sl(a)}. 
(D5) (The set of all propositions) 5r {[a]~:aeQ}; the elements 

of 2'  are denoted by a, b, c . . . .  (with indices, if necessary). 
(D6) (Actual proposition) A(x, a) iff (aea)(T(x, a)). 
(D7) (Trivial propositions) 1:=[I]~,  0:=[O]~. 
(D8) (Order relation for propositions) a~b  if[" (aea) and (fleb) 

imply (a </3). 
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By m a k i n g  use o f  the bas ic  ax ioms  and  defini t ions above,  JP prove  the first 
f undamen ta l  t heo rem o f  the theory.  

T h e o r e m  3.1.  The b ina ry  re laxa t ion  ~ is a pa r t i a l  o rde r  on ~ with 
respect  to which we denote ,  if  they exist, by  n and  u and  the g.l.b, and  the 
1.u.b., respectively.  

The  set 5~ o f  p ropos i t i ons  is a comple te  lattice. In  pa r t i cu la r  we have 
tha t :  

( E l )  Let  { a j } ~ ( ~ ) ;  then 

n aj  = [ ] '~ 'a j ]  ~ and u aj = ~ {c: ( V j ) a j ~ c }  

(L2) 0 = n { a : a ~ }  and  l = w { a : a e s  ~ 

W e  do agree with Had j i savvas  e t  al. ( H T M ) :  

The formalism briefly reproduced above is built on two interconnected levels, the 
level of questions and the level of propositions. For this reason we call it a 
question-proposition system and symbolize it by the notation qp-s. Now on the 
level of propositions, the logico-mathematical structure which emerges is that of 
a complete lattice [ .- .] .  

The global structure introduced by the two levels, of propositions and of 
questions, interconnected according to Definitions (D 1)-(D8) is a new structure, 
which involves more basic assertions than the usual lattice-theoretic formulations, 
namely those concerning relations between questions and propositions 
(Hadjisavvas et al., 1980). 

Quo t ing  Aer t s  (1983), " P i r o n  in t roduces  the  concept  o f  ' ques t ion '  to 
give a phys ica l  mean ing  to  the concept  o f  p ropos i t i on  tha t  is used in q u a n t u m  
logic. H e  then in t roduces  the  lat t ice o f  p roper t i e s  o f  a physical  system f rom 

this concept  o f  ques t ion . "  

R e m a r k  2. Refer r ing  to (L 1), we quote  the fo l lowing asser t ion  by  P i ron :  

the greatest lower bound of two propositions a and b has the following properties 

" an  b true" r  true" and "b true" 

which shows that n plays the same role as "and" in logic. However, for the least 
upper bound, we have only 

"a true" or "b true" ~ "a c~ b true" 

In fact one has the following: 

Proposition 3.1. I f"a  ub  true",~("a true" or "b true") for all a, b e ~ ,  then ~a 
is distributive: a n (b w e) = (an  b) w (a n e). 

In classical theory, ~ is the set of subsets of phase space and is distributive. The 
implication to the right in the theorem stated above is the essential distinction 
between classical and quantum theory (Piron, 1977). 
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One can add to definitions (D1)-(D8), which pertain to the orthodox 
JP approach, the following further definitions: 

(D9) (FR quasi-order) a-<fl iff T(x, a) implies T(x, fl) and F(x, ~) 
implies F( x, a), i.e., & ( a) ~ & (~) and So(fl) ~ S0(a). 

(D10) (FR equivalent questions) a~-/3 iff (a~fl)  and (fl-<a), i.e., 
Sl(a) = $1(/~) and So(a) = So(fl). 

(Dl l )  (FR propositions) [a]_~:---{fl:/3-~a}={13: &(~)=Sl(a)  and 
So(~) = So(a) }. 

(D12) (The set of all FR propositions) ~ : =  {[a]=: a~Q}; the ele- 
ments of ~ are denoted by p, q, r . . . .  (with indices, if 
necessary). 

(D13) (Truth values) r(x,p) iff (aep)(T(x, a)) and q~(x,p) iff 
(a~p)(F(x, a)). 

(D14) (Trivial FR propositions) 1FR: =[I ]~ ,  0W: =[0]_~. 
(D15) (Order relation for FR propositions) p<q iff (aep) and 

(fleq) imply (a<fi). 

Remark 3. We recall that JP stated that the second equation of (2.1) 
can be easily derived. This derivation does not seem actually possible, as is 
also suggested by the fact that the physical arrangements corresponding to 
(zcai) v and 7zeta, according to rules (i)-(iii) of (PD3), do not exactly coincide. 
At any rate it is possible to state the following result: 

a vv~ - a and (7fff.i) v'" lr(aY) 

Since the second of (2.1) is not needed to the development of JP theory, we 
will dispense with it in the sequel. 

We intend to deal now with the notion of JP "state" and the related 
properties. To this end, we introduce the following definitions. 

(D16) (JP state) o-(x)={ae3q:A(x, a)}. 
(D 17) (The set of all states) s  { o'(x) : x~ S} ; the elements of E will 

be denoted by u, v, w . . . .  (with indices, if necessary). 
(D18) (JP pure state) is any JP state o-(x) which is maximal in s 
(D19) (The set of all JP pure states) Ep is the set of all JP pure states. 
(D20) (Pure preparation) is any preparation xpeS whose associated 

JP state o'(xp) is pure (i.e., maximal in E). 
(D21) We denote by Sp the set of all pure preparations; evidently, 

~.~p = { O'(Xp) : Xp~ Sp} = o'( Sp) 

For any preparation x ~ S the set o-(x) is the collection of all JP proposi- 
tions which are actually true, i.e., true with certainty, in x. This set determines 
all the physical properties that can be attributed with certainty to the samples 
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of the physical system prepared according to x, whether the state has been 
measured. Thus o'(x) embodies the amount of information actually available 
for any single sample of the physical system prepared according to x. Hence, 
if xpeSp is a pure preparation, the information available on any individual 
sample prepared according to Xp is maximal, i.e., o-(xp) embodies a maximal 
amount of information. 

The following theorem collects some basic properties of JP states (Jauch 
and Piron, 1969; Cattaneo et al., 1989). 

Theorem 3.2. The set E of all JP states satisfies the following properties. 

(S1) If aeS(x) and at_b, then beo'(x). 
($2) If  {ai: ieI} ~ o'(x), then Nislai~o-(x). 
($3) 0r l e ~ x )  for every o-(x). 
($4) For any aeSe, a r  there exists at least one o-(x) such that 

aeo'(x). 

If for every x e S we put 

e(x)= n a 
aEo'(x) 

[which, owing to ($2), exists], then e(x)~ or(x) and 

o'(x) = {aeZ, a: e(x) ~a} 

Hence, we can conclude that o-(x) is characterized by e(x). Furthermore, let 
us denote by ~ a  the set of all atoms in lattice s whenever an atom 
ee o'(x) n ~ a  exists, then e = e(x); 

Theorem 3.3. For every pure preparation xpeSp, the proposition e(Xp) 
characterizing the state o(Xp) is an atom of the lattice ( ~ ,  0, _~). 

Conversely, for every atom e of the lattice ( ~ ,  0, ~> a pure preparation 
xpeSp exists such that e(Xp)=e. 

It follows from Theorem 3.3 that every atom of &o can be bijectively 
associated to a JP pure state according to the following one-to-one and onto 
correspondence: 

Zp- ~G (3.1) 
o'( xp) *--~ e( Xp) 

The existence of this one-to-one mapping allows us to identify any pure state 
with the corresponding atom. While the above definitions and results about 
JP states can be found in JP (see, for instance Jauch and Piron, 1969), the 
lack of any formalization of the notion of preparation neglects some impor- 
tant aspects, which we now complete. 
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(D22) 
(D23) 
(D24) 
(D25) 

Any CGN 

(CGN equivalent preparations) x'~y iff o-(x) = o-(y). 
(CGN states) [x]~ := {y: y,~x} = {y: o'(y) = o-(x)}. 
(The set of all CGN states) 5e: = {[x]~ : x~S}. 
(JP state associated to a CGN state) cr([x]=) := o-(y), what- 
ever be y ~ [x] =. 

equivalence class of preparations [x],~={y: cr(y)=o-(x)} is 
identifiable with the unique JP state o'(x), which is defined as the JP state 
a([x]~) of the whole equivalence class of preparations [x]~. In symbols, 

2 - 5 0  
(3.2) 

o-(x)~[x]~ 

Thus, from now on, by a JP state we mean both the equivalence class [x] 
and the set o-([x]~) of all propositions true (properties actual) in this state. 

(D26) (Properties actualin a state) d(w,  a) iff (xsw)(asa), T(x, a). 

3.1. JP  Peculiar Specific Axioms 

Additional assumptions (peculiar specific axioms of JP qp-s) are intro- 
duced by JP "in order to recover (in some weak formulation) the usual 
mathematical Hilbert space structure of which the quantum theory makes 
technical use for describing the microworld" (Hadjisavvas et al., 1980). 

Axiom C. For each proposition a 6 ~  there exists at least one compat- 
ible complement b e ~ ,  i.e., another proposition b such that: 

(C1) (Complement) ac~b=O and a w b = l .  
(C2) (Compatible) there exists a question 7sQ such that 7~a and 

7Vsb. 

Remark 4. Axiom C, in part (C2), interconnects the two levels of 
description of a qp-s, the one relative to propositions (propositions a and 
b) and the one--this is very important--relative to questions (the existence 
of question 7)- 

Axiom P. Let a, b ~ ,  and let a', b' be compatible complements of 
a, b, rcspectively; then, a___ b implies that the sublattice of ~ generated by 
{ a, b, a', b' } is Boolean. 

Axiom A: 
(A~) Let a t  ~ ,  a :~0; then, an atom p of ~ exists such that p ~a .  
(A2) (Covering law). Let a ~ f ,  let p be an atom of ~ ,  and let a ~ p = 

0; then, a u p  covers a. 
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We now can quote the second fundamental JP theorem. 

Theorem 3.4. In any qp-s in which Axioms C and P hold, we have the 
following results: 

1. For every a e ~  the compatible complement (whose existence is 
assured by Axiom C) is unique, and is denoted by a ' e ~  in the 
sequel). 

2. The mapping 

': a e ~q~ --. a' 6 Sf  

is a standard orthocomplementation in 5r 
3. With respect to this orthocomplementation, ~ is weakly modular 

(or orthomodular). 

Summarizing, ~ is a complete, orthocomplemented, orthomodular lattice 
(i.e., a CROC in Piron's terminology). We recall that, according to Piron, 
a CROC for which Axiom A holds, i.e., which is atomic and satisfies the 
covering law, is said to be a propos i t ional  sys tem.  

4. THE "COHERENCE" OF JP QP-S 
(THE "HILBERTIAN MODEL") 

Referring to qp-s, HTM stated that 

As far as we know, such a formal structure has not yet be studied. In particular 
it is not at all obvious a priori that this structure is formally self-consistent. (. �9 �9 ) 

In what follows we shall first show that the qp-s is self-consistent in the sense 
of  the abstract theory of  models, i.e., we shall show that it does admit a model, 
(. �9 .) According to the theory of  models a formal system is proved to be self- 
consistent if a model is produced for it, i.e., if a 'realization' o f  the language 
of  this formal system is produced which validates all the axioms of  the 
system. ( - ' - ) .  

The conclusion imposed by [the existence of  such a qp-s model] is far from 
being trivial, for two distinct reasons which may be related. 

(1) In the first place, as soon as one realizes fully the unusual character o f  
the definition for a product question (/rai), the existence of  at least a 
certain sort of  self-consistency for the qp-s appears as surprising much 
more than natural. 

(2) In the second place, the model constructed [by HTM] possesses certain 
striking peculiarities; while the propositions are represented by closed 
subspaces of  a Hilbert space, a product o f  questions is represented by a 
sam (of sets of  subspaces). 

This suggests that the formal self-consistency proved with the help of  such a 
drastic distorsion might somehow lead to difficulties in also mimicking the 
semantic structure associated to the quantum-mechanical formalism (Hadjisavvas 
et al., 1980). 
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We quote the answer of Foulis and Randall (FR): "Thus we find it 
curious that the Hilbert space model selected by [HTM], to prove the self- 
consistency of qp-s ( ' - . )  was so complicated that their model-theoretic 
proof had to be relegated to an appendix because of its length. It seems even 
more curious that, even after such a laborious proof (. . .)--establishing 
self-consistency according to their own criterion--they [i.e., HTM] could only 
grudgingly accord Piron's axioms 'a certain sort of self-consistency'" (Foulis 
and Randall, 1984). Moreover, FR assert that: "the book HTM are criticiz- 
ing [Piron, 1976a] contains on p. 22 a simple and well known model estab- 
lishing self-consistency for Piron's axiom system." 

Remark 1. To tell the truth, on p. 22 Piron shows only an example of 
a propositional lattice which is not distributive, but this lattice is not a 
"model" for his axiom system. In particular, no assignment is given to 
represent questions and so it is not proved that this example validates Axiom 
C, in which both questions and propositions are involved. 

Also, the following statement by Piron is not entirely correct, or, at 
least, if it is not correctly interpreted, could lead to misleading conclusions. 
"Let L,e be a CROC, i.e., a complete, orthocomplemented, and weakly modu- 
lar lattice. I f  one interprets the orthocomplement as a compatible complement, 
then Se satisfies Axioms C and P" (Piron, 1972). 

Indeed, from a purely formal point of view, a CROC satisfies only 
Axioms (C1) and P, and not the (C2) part of Axiom C. 

4.1. A Hilbert Space Model of qp-s 

Above the HTM assertion, "in particular, it is not at all obvious apriori 
that this structure is formally consistent" must be understood in the sense 
that, at least to the best of our knowledge about JP, one does not find, 
before Hadjisavvas et al. (1980), a model of the JP axiom system. 

In this section we give a model of a qp-s based on a complex (in 
general, separable) Hilbert space ~ ,  quite different from that of HTM and 
summarized by the following concrete mathematical structure: 

L j p ( ~ )  =- (S(Jr Q ( ~ ) ,  ~ ( Q ( ~ ) ) ;  4, ', H; T~) 

representing: 

(i) Preparation by nonzero vectors Vt of the Hilbert space ~ ,  i.e., 
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(ii) Questions by linear operators on ~ such that O < F < ~ ,  i.e., 
F~ Q(yF) (Hilbert space "effects"). In particular, orthogonal pro- 
jections on Jr ,  whose collection will be denoted by d~(gff), are 
representatives of questions (Hilbert space "exact or decision 
effects"). 

(iii) The trivial certain question by the identity operator ~ ; the inverse 
question of F by F': = ~ - F; the product of any family of questions 
{Fj:j~J} by the operator 

HFj:= �89 + (EMo(~O)') 

where EM is the orthogonal projection which projects onto the subspace M 
and 

M,(J)  := N Ker(~ - F j )  and M0(J):= N Ker(F:) 
j~J j~J 

(iv) Predicate of question true in a preparation by the following 
relation: 

(H.BP1) T , (g ,  F) iff geKer({-F)/{_0} 

[Note that ~,r - F )  iff F~,= ~ iff <F~'[ ~> = II ~'112.] 
In accordance with the general JP affirmation (2.1), it is trivial to prove 

that: 

(n.1) F = ( F ' )  and (1-IFj)'=HAF~). 

Moreover, we define the following binary relation: 

F~e(gt, F) iff Tg(gt, F ' )  

(H.BP2) iff vtsKer(F)/{0} 

[Note that ~t~Ker(F) iff F~t=_0 iff (Fvt[ Vt) =0.] 

Remark 2. The above binary relations "Tg"  and "F~e," which are the 
Hilbertian representatives of the binary predicates "true" and "false" of JP 
qp-s, can be restated in the following way (~t#0): 

(H.T) Tzr(~, F) iff <F~[ t, tr>/]] ~F[ 2= 1. 
(H.F) F,(~,, F) iff <F~ I ~,>/11~112=0. 

These are the translations, inside our Hilbert space realization, of the state- 
ments "question F is true in preparation ~" and "question F is false in 
preparation ~," respectively, and we contend that, contrary to the HTM 
Hilbert space model, no "difficulties in also mimicking the semantical struc- 
ture associated to the quantum-mechanical formalism" are produced by the 
above Hilbertian interpretation of JP qp-s. 
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Indeed, according to (H.T) and (H.F), formula T~e(u/,F) [resp., 
F~(Ig, F)] agrees with the usual interpretation in the orthodox Hilbert space 
quantum mechanics, "in preparation V the probability of occurrence of effect 
F is 1 (resp., 0), i.e., effect F occurs (resp., does not occurs) with certainty 
in state V." 

Let Fe  Q(~e ), for the sake of simplicity; in the sequel we set 

M1 (F) := Ker(~ - F) and Mo(F) := Ker(F) 

and we introduce the following notations: 

The certainly-true domain of F: SI(F) := Mt(F) / {O_}. 
The certainly-false domain of F: So(F):= Mo(F)/ {O_}. 

The following results can easily be proved, and immediately imply that the 
basic specific axioms of JP qp-s are validated. 

Theorem 4.1: 
(H.A1) S,(~) = S(Jq'). 
(H.A2) So(F')=SI(F). 
(H.A3) S~(IIFj)= c~S,(Fj) and S0(I-IFj)= c~So(Fj). 
(H.A4) S~(F) c~ So(F) = ~ .  

Definitions (D1)-(D8) of Section 3 are translated into the following 
Hilbertian definitions, respectively: 

(H.D1) O=~' .  
(H.D2) F~ < F2 iff (F1 u/= g) ~ (F2 gt= gt). 
(H.D3) F~~F2 iff(Vlv=gt)<~-(Fzgt=~). 
(H.D4) IF] ~ := {G: S,(F) = S~(G)} = {G: M,(F) = M I ( G ) } .  

Therefore, all questions of a given proposition are characterized by the same 
certainly-true domain; this common certainly-true domain turns out to be 
the satisfaction domain of the proposition. Hence, setting 

(H.D5) ~(Jt~) = {[r]~ : F 6 Q ( ~ ) }  

there is a one-to-one correspondence between JP propositions of the Hilber- 
tian model and subspaces of the Hilbert space and, as a consequence of 
Hilbert space theory, between JP propositions and orthogonal projections: 

Q(2~) 

uI 
(4.1) 

s ( x r  - ~ ( ~ f )  - ~ ( H )  

[F]_ ~--~ Mt( F) ~--'~ EM~(F) 
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Continuing the discussion of our Hilbert space model, we get 

(H.D6) A~r(~', [ r]~)  iffG~[F]~ and G(~/)=V 

or, equivalently, if we identify, according to (4.1), Hilbertian JP propositions 
from 5r ~) with orthogonal projections from g(Yg), 

Aar(~, E) iff ~SI (E ) .  (H.D6' )  

Lastly, 

(H.D7) l=[q_={~} 
0= [0]_ = {Go: G0(~) = ~/iff ~=0_} 

(H.DS) [F]_ ___ [G]~ iff MI(F) ~_M,(G). 

Remark 3. One can also easily construct the Hilbcrtian representations 
of definitions (Dg)-(D15). Anyway, we will omit them since they are not 
essential for the future developments. 

We discuss now the Hilbertian representations of JP states and CGN 
states, where, for every Hilbertian preparation ~, ~p . . . . .  we denote by 
�9 , @ . . . . .  the one-dimensional closed subspaces generated by them: 

(H.D16) o-(~) :={Er  ~S1(E)} .  

Remark 4. Note that, if we denote by E,e the orthogonal projection 
which projects onto the one-dimensional subspace W of ~r we have that 
Sl(E~e) =tP/{0_} and so E~, belongs to the JP state o'(~g). 

Since any Ew is an atom of the Hilbertian propositional lattice L,e(3/f), 
we have that all Hilbertian JP states o'(~) are pure states [owing to Theorem 
3.3 and according to (D18)], and all Hilbertian preparations ~ S ( J ~ )  are 
pure preparations [according to (D20)]. We denote by Ep(3/f) the set of all 
pure Hilbertian JP states, in the sequel. 

(H.D22) r ~g iff �9 = tp; i.e., two Hilbertian preparation procedures 
are CGN equivalent iff they generate the same one-dimen- 
sional subspace of ~vt~. 

(H.D23) and (H.D24) [~]_____-W/{_0}; i.e., Hilbertian CGN pure 
states are identifiable with one-dimensional subspaces of ~(f, 
whose collection will be denoted by 6ep(~vt ~). 

Summarizing the results about states in the Hilbertian model of JP qp-s [and 
taking into account identifications (3.1) and (3.2)], we can get the following 
graph : 

(4.2) 
a (g )o  E~, ~~ 

We stress that JP pure states are, in this Hilbertian model, identifiable with 
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one-dimensional subspaces which, in their turn, are identifiable with the 
corresponding orthogonal projection. 

Theorem 4.2. In the above Hilbertian realization of JP qp-s, the follow- 
ing holds. 

Condition C. For each proposition a = [ F ] ~ ,  whose certainly-true 
domain is identifiable with subspace M 1 ( a ) = K e r ( ~ - F ) = M I ( F ) ,  there 
exists the (unique) compatible complement a '=  [E~t~(a)l] ~, whose certainly- 
true domain is identifiable with subspace M~ (a ' )= M1 (a) -L. In particular: 

(H.C2) There exists exactly one question, precisely E~t,(a), such that 

(EMffa)) e a and (EM,(a))' ca' 

Moreover: 

(i) Proposition a contains a lot of questions, i.e., all the questions 
represented by operators O < G<~ such that Ker(~ - G) = M~(a). 

(ii) Proposition a' contains a lot of questions, i.e., all the questions 
represented by operators (~<G0<_~ such that Ker(~-Go)=M~(a')= 
Ml(a) • 

(iii) For any Fea we can construct proposition c = [F'] ~, but in general 
c r a', precisely, 

VFea with FCEM,(a) we have F'~a'=[EM,(a)• 

(iv) Question EM,(~) minimizes the randomness of the certainly-no 
domains of all other Gea; i.e., we get 

MI(a')=Mo(EM~(,)) = U go(G) 
G=_a 

Therefore, this Hilbertian realization of the qp-s validates Axiom C and 
there is no difficulty to prove that it also validates Axioms P and A [we use 
the convention of naming "quantum mechanics" (henceforth, QM) the Hil- 
bert space model, with the above outlined "interpretations," of the axiomatic 
formalized theory of QP according to the JP approach to qp-s). 

In conclusion, we can assert the following: 

Theorem 4.3. r The qp-s admit a model (based on the Hilbert space 
mathematical structure). 

In our JP qp-s model [see (4.1)] the "propositional logic" &o(~)  of all 
Hilbertian propositions is identifiable with the propositional systems (i.e., 
orthomodular orthocomplemented atomic complete lattices satisfying the 
covering condition) ~ / ( ~  ), of all closed subspaces of i f ,  and g ( ~ ) ,  of all 
orthogonal projections on fig. 
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Since 8(~,~ff ) ~ Q(oVf), we have the following conclusions: (1) any ortho- 
gonal projection E is a Hilbertian realization of some question, (2) any JP 
Hilbertian Proposition a is generated by a unique orthogonal projection, 
and, (3) owing to (iv), Theorem 4.2, this orthogonal projection "minimizes 
the randomness of the certainly-no domains" (Mielnik, 1976) of all other 
Hilbertian questions from a. 

Hence, in axiomatic QM, it is customary to assume that orthogonal 
projections represent yes-no measuring apparatus which sharply, i.e., 
without noise and imprecision, test the corresponding Hilbertian JP 
propositions. 

This is the reason people identify any proposition with the experimental 
sharp yes-no device which tests it, and, paraphrasing an FR assertion, "for 
an orthodox (Hilbert space) quantum mechanical entity (. �9 .), the canonical 
mapping 8(;gf)~Lf(~tg)  is a lattice isomorphism and both d~(aff) and 
~ ( ~ )  are isomorphic to the lattice of closed subspaces of the Hilbert space. 
Although this is mathematically quite convenient, it has encouraged people 
to identify g ( Jg)  with ~e(24 ~) and this has been a metaphysical disaster" 
(Randall and Foulis, 1983). 

If this identification has been a source of miscomprehensions, another 
source of miscomprehensions, more subtle, could rise from the identification 
(4.2) between Hilbertian JP (or CGN) pure states and projections onto one- 
dimensional subspaces, which in any case are representatives of a certain 
class of sharp Hilbertian questions. A careless identification of Zp(~g') [or 
Y p ( ~ ) ]  with this class would lead to another metaphysical disaster. 

4.2. An Example: Localization in 

First, we outline a JP qp-s for the classical localization of a particle in 
a one-dimensional space, say described by the real line ~. In this realization 
we represent: 

(i) Classical preparation procedures by elements xe  ~. 
(ii) Classical localization questions by Borel functions v: N~--*[0, 1], 

whose collection is denoted by Q(N). For any wQ(N) we introduce the 
Borel subsets 

Ai(v):= v '({1}) and A0(v) 2= V- 1({0} ) 

In particular, characteristic functions ZA of Borel subsets A of R, whose set 
is denoted by 8(N), are representatives of classical localization questions. 
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(iii) The classical certain localization question by the function ! such 
that, Vx ~ R, 

!(x):= 1 

The inverse of v (which is a classical localization question, too) by v':= ! - v 
(note that Z~ = ZAc) �9 

The product of any family {vj:jEJ} by the function 
I 

where 

& ( J ) : =  ~ A,(~) and Ao(J):= ~ Ao(vj) 
j~J j~J 

(iv) Binary predicate of "localization true in a preparation" by the 
binary relation 

(C.BP1) Tc(x, v) iff v(x) = 1. 

Binary predicate of "localization false in a preparation" is represented by 
the binary relation 

(C.BP2) Fc(x, v) iff v(x)= O. 

The certainly-true and certainly-false domains of v are, respectively, 

S l ( v ) : = { x ~ :  L(x,  v)} =A,(v) 

S0(v):= {x ~ ~. Fc(x, v) } = Ao(V) 

Example 4.1. If v, and v2 are two exact classical localization questions 
whose certainly-true domains are intervals A, (Vl) = (1, 5) and &(v2) = (3, 8), 
respectively, then their product is the classical localization question 

I 1, x~(3, 5) 

Jr{v,, v2}(x)= 1/2, x~(1, 3] ~ [5, 8) 

0, otherwise 

for which &(~{v,, v2})= (3, 5) and A0(~{v,, v2})= (-oe,  1] u [8, oe). 

Without going into details, we remark that a classical localization pro- 
position is the equivalence class of all classical localization questions having 
the same certainly-true domain. Therefore, any classical localization proposi- 
tion is characterized by a Borel set A, the certainly-yes domain common to 
all classical localization questions of the proposition, and represents the 
classical property IdA ) = "the particle is (classically) localized in A." This 
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property is sharply measured by the unique exact classical localization ques- 
tion z~elc(A), whereas all the other classical localization questions wlc(A) 
give an unsharp measurement of the same property. 

Quantum Description of Localization in 

Let L2(R) be the Hilbert space of the quantum description of a particle 
in a one-dimensional space. For every Borel measurable function 
v: R~--+ [0, 1], i.e., classical localization question w Q(~), we introduce the 
linear operator F(v):L2(~)~-*L2(R) defined, for any f~L2(~), as follows: 

(F( v)f)(x) := v(x)f (x) 

Evidently, according to the Hilbertian model of Section 4.1, F(v)~ Q(L2(~)) 
is a Hilbertian question whose inverse F(v)'~Q(Lz(~)) is the question 

(F(v) )c) (x) := ( 1 - v(x))f(x) = V'(x)f(x) 

The certainly-yes and certainly-no domains of F(v) are 

S,(F(v)) = {geL2(~)/{0} : supp(~) EAI(v)} (4.3) 

So(F(v)) = {q3~L2(~)/{0_} : supp(cp)~ Ao(v)} (4.4) 

Remark 5. Note that for any pair of classical localization questions 
Vl, v2~ Q(R), condition 

A~(v~) c~ Al(V2) = ~ implies M~(F(v,)) l m~(F(v2)) 

Moreover, if for a classical localization question v~ Q(~) both A~(v) and 
Ao(v) are not empty, then in any preparation procedure f~S(L2(~)), with 
supp( f )  = ~, the Hilbertian question F(v) is neither "true" nor "false." 

To any classical exact localization question Za, which sharply measured 
the classical property lc(A)="the particle is (classically) localized in A," 
there corresponds the Hilbertian exact localization question E(A):=F(zA) 
defined as 

(E(A)f) (x):= Za (x)f(x) 

Remark 6. Note that E(A)'=E(AC). 

Moreover, for any family {F(vj):jsJ} of the Hilbertian localization 
questions, their "product" is the Hilbertian localization question 

= ~(ZAI(S) + Z(a0(J))") ( ' )  (4.5) 
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Two Hilbertian localization questions F(v~) and F(v2) are JP equivalent 
iff &(Vl)= A~(v2). Then any Hilbertian localization proposition is charac- 
terized by a Borel subset A and is associated to the Hilbertian property 
lq(A) = "the particle is (quantistically) localizated in A." Hence, 

lq(A) ~= {F(v) : &(v) = A} = [E(A)]_ (4.6) 

Property/q(A) is sharply tested by the Hilbertian question represented by 
the orthogonal projection E(A); any Hilbertian localization question F(v), 
for which A~(v)= A, measures in an unsharp way the same property. 

Orthogonal projection E(A) projects onto the subspace of all feL2(N) 
whose support is in A and so these nonzero vectors f, according to (H.D6'), 
represent preparation procedures in which this property is actual (i.e., true 
with certainty) ; each single individual sample prepared according to any of 
these preparation procedures gives the answer "yes" to property/q(A). 

Orthogonal projection E(A)' projects onto the subspace of all geLz(R) 
whose support is in A c. Hence, according to Theorem 4.2, if lq(A) = [E(A)] ~ 
is the proposition "the particle is (quantistically) localized in A," then 

lq(A)'~ [E(A)'] ~ = [E(AC)] ~ ~ lq(A c) (4.7) 

That is, the proposition "the particle is not (quantistically) localized in A" 
is just the proposition "the particle is (quantistically) localized in A c.'' Each 
nonzero vector from L2(~) whose support is contained in A ~ represents a 
preparation procedure of single individual samples for which property lq(A)' 
is true with certainty. 

We remark that for any pair of nonempty, mutually disjoint Borel sets, 
A' ~ A" = ~ ,  the corresponding exact localization questions E(A' ) and E(A" ) 
project onto two subspaces MI (A') and MI (A"), which are mutually ortho- 
gonal. Now, the property "the particle is (quantistically) localized in 
A'wA .... is sharply measured by the exact localization question 
E(A' u A" ) = E(A' ) + E(A" ) which projects onto subspace Mt (A') + M(A"). 
If g/eMI(A')/{Q} [resp., V"eM~(A")/{Q} ], i.e., is a preparation procedure 
of single-particle localized in A' (resp., A") with certainty, then 
V'+ V"s M~ (A'w A" )/{0 } is a preparation procedure of particle localized in 
A' w A" with certainty, 

Tq(i/]'+ i[[", E(A' t,..) A")) 

However, 

-nTq(V'+ V", E(A')) and -~Tq(v'+ ~", E(A")) 

In conclusion, the preparation V'+ V" is such that the property "the 
particle is (quantistically) localized in A' w A"" is "true" with certainty, but 
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in which we cannot state either that "the particle is (quantistically) localized 
in A'" or that "the particle is (quantistically) localized in A"" is true. 

5. MACKEY QUESTIONS, JP  QUESTIONS, AND 
RELATED M I S U N D E R S T A N D I N G S  

The Hilbert space model of JP qp-s previously introduced can be sum- 
marized in the following scheme: 

,~-real 
a~Q , F E Q ( ~ )  

,~-real 

[a]_ ezf  , IF]~ e( f) 

We recall the following definitions, which compell us to make a clear distinc- 
tion between "questions" of the JP approach and "questions" of the Mackey 
(M) approach. First we have the following definition pertaining to the JP 
approach. 

JP Questions. "A question is every experiment leading to an alternative 
of which the terms are 'yes' or 'no '"  (the set Q). 

As recalled in the Introduction, Piron's isomorphism theorem can be 
formulated in the following way. 

(P) The partially ordered set of all propositions in quantum mechanics 
is isomorphic to the partially ordered set of all closed subspaces 
of a vector space ~ ,  constructed on some division ring with invo- 
lution ~ and endowed with a nondegenerate sesquilinear form 

< I 

The role of specific peculiar axioms in the JP approach is pointed out by 
Aerts (1983) in the following statement: "He [Piron] also defines a set of 
axioms on this lattice, such that when these axioms are satisfied, the theory 
becomes a theory equivalent to quantum mechanics (in Hilbert space). (- �9 ") 
Of course, his aim was to clarify quantum mechanics, and therefore he was 
looking for a set of axioms that would reduce the a priori more general 
theory to a theory as quantum mechanics." 

On the other hand, we have the following assumption in the Mackey 
approach. 

M Questions. "The partially ordered set of all questions in quantum 
mechanics is isomorphic to the partially ordered set of all closed subspaces 
of a separable, infinite dimensional Hilbert space" [Axiom VII of Mackey 
(1963)], [the set J r  s 
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Therefore, we must distinguish between: 

(a) ~:  JP-questions. 
(b) 5r ~ J/g(~,~): JP-propositions, identified with M questions. 

With respect to this, we stress that the structure (Q;  I, 7c, v} is not a 
poset (and so neither a lattice). Hence, ~ cannot be considered as a lattice 
meet with respect to some supposed (or imagined) partial ordering, nor is v 
a sort of  orthocomplementation. 

On the contrary, ( ~ ;  1, n ,  '}  is an orthocomplernented atomic com- 
plete lattice in which r~ is the lattice meet with respect to a well-defined 
ordering and ' is a standard orthocomplementation mapping on this poset. 

The identification between M questions and JP questions is the source 
of many misconceptions, which can be based on the following H T M  state- 
ment: "The definition of a product of  questions and the rule for the 
'negation' of  such a product 

(~ai) v= ~(aD 

are unusual and seem to contradict de Morgan's law" (Hadjisavvas et al., 
1980). 

This doubt  about the contradiction of de Morgan's law is explicit in 
the following comment of a referee's report on a work of ours (which we 
quote only as an extreme, but undoubtedly clear, exemplification of a widely 
diffused position about JP qp-s): 

The theory proposed by JP starts from the idea of an experimental question; the 
claim was made by JP that we could show a priori that the structure of  the set 
of  experimental questions was that of  an orthocomplemented lattice. [This asser- 
tion seems to us quite curious, especially in making reference to the term "a 
priori"; at any rate, there is no trace of  the aforesaid claim in any of JP's papers.] 
(. �9 .) This claim has been severely criticized (see, e.g., Hughes, PSA 1982, Vol. 
I) ; the grounds of  this criticism are that, if we accept the operational definitions 
given of  the meet of two questions ( a ^  fl) and the negation of  a question (aV), 
then we find that 

aV fl=def(aV A flV)V=aA fl (5.1) 

which is an undesirable result, showing as it does that the operational definitions 
of  meet and complementation cannot, via de Morgan's laws, define a proper 
lattice-theoretic join operation as they should [lst Referee's Report]. 

Our comment on this position, based on the foregoing discussion on 
the JP approach is that, if a,/3 are questions from ( .~; / ,  ~c, v}, then: v must 
coincide with the only unary operation defined on ~, i.e., the inverse, while 
/x must coincide with the only nonunary operator defined on ~, i.e., the 

product Jr. 
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In this case, the referee's equation 

(av ̂ ~v)V=a^~ 

is correct and well known in the framework of the JP theory; indeed, it is 
just 

(av~r/~v)v= a l r p  

which has been stated by Piron in a more general form, i.e., for any family 
{a,-} of  questions [see (2.1) and (H.1) for the Hilbert space model], 

(TraY) v = ~ra, 

Therefore, the new operator v defined in .~ by (5.1) coincides with ^, i.e., 
is the product, and this does not introduce any "undesirable result," since 
.~ is n o t  a lattice and A is n o t  a meet. 

Indeed, in the JP approach no partial order relation is introduced on 
the set of  questions Q; moreover, (DF2) or (D2) define only a quasi-order 
(a reflexive and transitive, but in general not an antisymmetric, relation) on 
Q and in JP's papers one cannot find any mention of  some alleged partial 
ordering (and so, a f o r t i o r i ,  of  a meet or an orthocomplementation) on the 
set of  questions. Hence, only a superficial reading of JP's papers allows one 
to confuse the product with the meet and the inverse with the orthocomple- 
mentation with respect to some (not introduced) partial ordering on Q; 
consequently, the above v operation cannot be interpreted as a lattice join 
and any reference to wrong behaviors with respect to some de Morgan law 
lacks significance. 

From a different point of  view, an empirical critique characterizes a 
report of  a second referee, which is very interesting and is linked, in our 
opinion, always to the identifications between Piron questions and Mackey 
questions: 

Measurement of spin projections does not give yes-no information, when using 
a Stern-Gerlach device for example. Instead, if the particle is deflected up, there 
is a high probability that the spin was up, but not a probability = 1. In measuring 
screen observables, again one obtains only probabilistic results. In signal process- 
ing, in particles localization, and so on, it is well established that the observables 
are based on effects which are operators with spectrum in [0, 1], [i.e., operators 
such that O <F<I, our note], and which for most cases do not include 1 as an 
eigenvalue. Thus, empirically speaking, one probably has few or no "questions" at 
all [2nd Referee's Report]. 

With respect to this referee's comments, we do agree that "it is now 
well established that observables are based on e f f ec t s ,~ ' i . e . ,  Hilbertian opera- 
tors from ,~(Yt ~), but in our Hilbert space model all effects are representatives 
of  JP questions. Hence, the subsequent phrase "thus, empirically speaking, 
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one p r o b a b l y  has  few or  no  ques t ions  at  al l"  can  have two possible  
in te rpre ta t ions .  

(i) E i ther  one  in terpre ts  "ques t ions"  as JP quest ions,  and  in this case, 
empi r ica l ly  speaking ,  one p r o b a b l y  has  few or  no  "effects" at  all, too.  

(ii) Or,  on  the  o ther  hand ,  one in terpre ts  "ques t ions"  as M quest ions,  
and  in this case it is cor rec t  that ,  empir ical ly ,  there  are  p r o b a b l y  few or  no 
ques t ions  at  all. 

O n  the con t ra ry ,  i f  accord ing  to our  Hi lbe r t  space model ,  "effects" are  
~:epresentative o f  JP "ques t i ons"  and  i f  "effects" (a t  least  a cer ta in  class o f  
them)  are  "empi r i ca l ly  def inable ,"  then the co r r e spond ing  JP "ques t ions"  
are "empi r i ca l ly  def inable ,"  too,  and  at  least  there  are  as m a n y  ques t ions  as 
effects. 

6. H T M  C R I T I Q U E  OF P I R O N  Q P - S  

A m o r e  subt le  cr i t ique of  the JP a p p r o a c h  has been m a d e  by  H T M  
based  on  the fo l lowing "nega t ive"  results.  

Theorem 6.1. In  any JP qp-s  the fo l lowing s ta tements  hold .  
~-2. F o r  every a~A~\{1} ,  some a~a exists such tha t  aV~a '. 
~--3. F o r  every b, c s ~ ,  fleb, y~c we have 

Jr{r, y} e b  ~ c while rc{]3v, yv} q~(b c~ c)' 

Precisely,  H T M  say tha t  the a t t emp t  by  JP to p roduce  a fo rmal  system 
of propositions in their  ear ly  w o r k  (Pi ron,  1964; Jauch,  1968) 

has encountered a serious criticism: one of the axioms of the system, asserting 
the existence of a 'product proposition' a c~ b for any pair (a, b) of propositions 
from the system, is devoid of semantic definability. 

Recently Piron has proposed a new formal system of "questions" and "proposi- 
tions" claimed to eliminate this deficiency. Moreover, this system is claimed to 
be able to yield by interpretation quantum mechanics as well as any other known 
physical theory, thus offering a general syntactic scheme for physical theories of 
any kind. 

(- �9 -) However, [the relevance of Piron's formal system] as a syntactic scheme 
for physical theories cannot be accepted. Indeed, by a succession of theorems it 
will be brought into evidence that one of the axioms of the system asserts the 
"existence' of a class of propositions for which neither a syntactic method of 
construction is explicitly available inside the system, nor can a semantical defini- 
tion be found in consistency with the semantic content assigned to the correspond- 
ing descriptive elements from the quantum mechanical formalism. Under such 
conditions it will be concluded that, as a syntactic scheme for the generation of 
quantum mechanics by interpretation, the formal system proposed by Piron so 
far has not attained its aim (Hadjisavvas et al., 1980). 
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6.1. Conce rn ing  H T M  T h e o r e m  ~-2  

In  pa r t i cu l a r ,  q u o t i n g  H T M :  

As far as we know, Axiom C has not yet been seriously criticized. We believe 
that this acceptance of Axiom C stems from a false assumption. Namely several 
authors (for example, Greechie and Gudder 

Note. "Every proposition has at least one compatible complement. This can 
be seen as follows. If a~a and let b be the equivalence class containing a v. Then 
b is the compatible complement of a" [Greechie and Gudder (1974)] 

and, in an early version of qp-s, Jauch and Piron 

"If  a~a is a yes-no experiment [i.e., a question] in the class a, then a' contains 
the experiment [i.e., the question] a v, which is the same experiment as a but with 
its alternative interchanged." [Jauch and Piron (1970)]) 

consider that the compatible complement of a' of a proposition of a qp-s simply 
consists of the class {a v} of all the negations a v of the questions a~a. [Of which 
Thieffine (1983) gives the following formalization: 

Assumption U. The compatible complement a' of a proposition a of the formal 
system of questions and propositions consists of the class {av: ctea} of all inverses 
a v of a question a, aEa.] 

If this were true, Axiom C would be so trivially satisfied that the necessity of its 
statement as an axiom would be questionable. But in fact the mentioned assump- 
tion [i.e., U] is not true (. - .). This will be shown by (. �9 .) 

Theorem ~-2. For any aE& ~ distinct from the trivial proposition, the com- 
patible complement a' is different from the class of the negations of all the 
questions of which a is the equivalence class. 

(. �9 .) Thus--syntactically--we are already in the presence of the surprising fact 
that the negation of a given question lies somewhere outside the complement of 
the proposition to which that question belongs. (' �9 ') Thus contrary to a widely 
held opinion, the compatible complement a '~quite generally---cannot be formed 
as the class of all negations of the questions from a qp-s. This, however, does not 
yet  lead to doubt about the existence o f  a'. Indeed so far there is still the possibility 
that for each given proposition a some method for constructing a nonvoid a' is 
specifiable, even if a' does not contain all the negations a v of the a~a (Hadjisavvas 
et al., 1980). 

As  a c o n s e q u e n c e  o f  the  a b o v e  d i scuss ion  a b o u t  the  c o n t e n t  o f  T h e o r e m  

Y 2 ,  H T M  c o n c l u d e  tha t  " w h a t  is q u e s t i o n a b l e  is the  ve ry  " e x i s t e n c e "  o f  the  

p r o p o s i t i o n  a ' ,  the  c o m p a t i b l e  c o m p l e m e n t  o f  a n y  p r o p o s i t i o n  a "  ( H a d j i -  

s avvas  e t  al . ,  1980). 

In  o u r  o p i n i o n ,  the  u n i q u e  poss ib le  n e g a t i v e  c o n t e n t  o f  ~'-2 is t ha t  it 

c o n t r a d i c t s  A s s u m p t i o n  U in the  p re sence  o f  A x i o m  C, a n d  n o t h i n g  else. T o  

exp la in  this p o i n t  be t te r ,  a n d  r e fe r r ing  to  o u r  H i l b e r t  space  m o d e l ,  we,  

s tep by  s tep in s q u a r e  b racke t s ,  c o m m e n t  u p o n  the  f o l l o w i n g  d i scuss ion  in 

H a d j i s a v v a s  e t  al. (1980).  
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Interpretative Illustration. Consider a particle in a one-dimensional 
space, say represented by the real line. Let a, fl be two questions defined as 
follows: a is defined by an apparatus capable of verifying whether or not 
the position of the particle belongs to the set (0, 1), the answer 'yes' corre- 
sponding to the case that the particle is found in (0, 1) ; analogously, fl is an 
apparatus capable of  verifying if the position of the particle belongs to the 
set (2, 3)." 

[In our L2(~) Hilbertian model, a is represented by any Hilbertian question 
F(vl), with Al(vl)= (0, 1), which is "true" in any preparation ~ such that 
supp(vt) ___ (0, 1), and flby any Hilbertian question F(v2), with &(Vz) = (2, 3), 
which is "true" in any preparation q~ such that supp(~0)~(2, 3).] 

"Note  that, by definition (PD2), a v and fly correspond to the same apparatus, 
but for these questions the answers 'yes' and 'no' have been inverted. Let 
a, b the propositions to which a and fl belong." 

[In the Hilbertian realization, a=[E(0 ,  1)]~ and b=[E(2 ,  3)]~ are the 
required propositions.] 

"We note that in this illustration, apart from their syntactic definitions, the 
propositions a, b are furthermore endowed with a semantic content, for 
instance, here the proposition 'the position of the particle belongs to the 
space interval represented by (0, 1),' which can be verified or falsified by use 
of  the apparatus a." 

[Hilbertian proposition a = [E(0, 1)] ~ is associated to the Hilbertian localiz- 
ation property lq(O, 1), see (4.6), which gives the semantic content to a; 
property lq(O, 1) is actual in every preparation ~ such that supp(~t)_~ (0, 1), 
and is potential in all other Hilbertian preparations.] 

"By construction we have a~ a, aV~ a', fl~ b, flv~ b'. Furthermore, b ~ a'. Thus, 
b and a are orthogonal." 

[This H T M  assertion must be correctly interpreted. Precisely, if a~a, then 
one can construct a*(a):= [av]_, which depends on the question a~a and 
is such that a~a*(a); of course, a and a*(a) satisfy condition (C2) of  
compatibility but, in general, condition (C1) does not hold for this pair 
of propositions and so a*(a)#a', from which we get a~r '. At any rate, 
Axiom C assumes that at least one a~a exists such that a'=a*(a~) is 
the compatible complement of a; owing to Axiom P, this compatible 
complement is unique (incidentally, the H T M  proof  of ~-'2 refers just to 
this a~). In our Hilbertian model, the unique compatible complement of 
a =  [E(0, 1)]_ exists and is a '=  [E((0, l)C)]_. For any a=F(vO~[E(O, 1)]~, 
different from E(0, 1), we have F(vl)'~[E(Ao(vl))]~; hence, a* (a )=  
[E(A0(v,))]~ v~a ' and F(vl)'q~[E((O, 1)")]~ =a' .  An analogous result holds 
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for b=[E(2,  3)1_, b '=[E((2,  3)c)]~, and F(v2)e[E(2, 3)]_. Note that in 
general we cannot affirm that b_.a*(a);  on the contrary, b c_a' and VaEa, 
a*(a) ~a'.] 

" I f  we now define the question y=  azrfl v, then, as shown in the proof of 
Theorem ~--2, one has yea,  ~,V~a'." 

[Bearing in mind (4.5), for the Hilbertian localization questions discussed 
above we get 

)'= F(vl)HF(v:) '  = �89 (X((0,1) n A0(V2)) -~- X((2,3) ~ A0(Vl)) c) ( " )  

but if condition (0, 1)= A0(v:) does not hold, then we cannot state that yea. 
On the other hand, the Hilbertian localization question 

7J = E(0, 1)IIE(2, 3)' = (Z(0,1) + �89 (Z((- ~.0l ~ tl,21 ~ [3, + o~)))) (") 

is such that 7/~ ea, y[r 

In conclusion, Axiom C ensures that for any proposition a a compatible 
complement a' exists; in particular, as a consequence of C2, a question a~ ea  
exists such that a[ea'. But, in general, for any other aea, aCa~, 
a~ea*(a) Ca'. This result can be summarized by the following general state- 
ment (Cattaneo et al., 1988) 

a~al  does not imply a ~ f l  ~ (6.1) 

that is, 

[a] ~ = [al]  ~ while, in general [a ~] ~ r [a~'] _ (6.2) 

[In the LE(R) localization example, F(v~)~F(v2) iff A~(vl)=A~(v2), while 
F(Vl)'~F(v2)' iff A0(vl)=Ao(v2); the latter conditions does not hold in 
general.] 

Remark 1. In the light of our Hilbertian model, we find interesting the 
following answer of Foulis and Randall (1984) to HTM's critique: "In a 
generalized qp-s it is quite possible for a proposition to have more than 
one compatible complement, in conformity with the words of Greechie and 
Gudder. Greechie and Gudder do not say that the compatible complement 
of a' consists of  the class {a~: aea} nor even that the latter set is an equiva- 
lence class at all. What they assert is that, for each aea, the equivalence 
class b -- { a v} is a compatible complement of a - -and  this is a quite different 
matter." 

As we have already noticed, if F(v) is a Hilbertian localization question 
with associated proposition [F(v)]~ = [E(A~(v))]~, then 

[F(v)']_ = [E(Ao(v))] 

in general does not satisfy condition (C1) and so the FR assertion is not 
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true. At any rate, observing that Greechie and Gudder do not assert that "b 
is a compatible complement of a," rather that "b is the compatible comple- 
ment of a," for the sake of completeness, we also quote the reply of Hadji- 
savvas and Thieffine (1984): "Immediately after the cited note, Greechie and 
Gudder state Axiom P, which is valid for Piron's qp-s and which implies 
uniqueness o f  the compatible complement. It follows from this uniqueness and 
from their note that the compatible complement of a proposition a contains 
all a v for a~a." 

6.2. Concerning HTM Theorem ~-"3 

We now quote another critique by HTM of Axiom C, based on their 
Theorem ~3 .  

Let us consider any pair of distinct propositions a~LP, b ~ ,  a r  
a = { a i } ,  b = 

Let us consider all the product questions aizrflj, ai~a, ~j~b. 
As a consequence of Theorem Y-3, "now we assert that the compatible 

complement (a c~ b)' of a ~ b contains none of the negations (aizr/3j) v of the 
question (aizr~) by help of which--exclusively--the proposition a ~ b can 
be defined. (- �9 .) 

The content of Theorem Y-3 can be expressed graphically as follows: 

(a,b)~LP• Sf, a ~ b  (arcfl)6a~b 

a~a, [3Eb ( azrfl)v eg(a c~ b )' " 

(Hadjisavvas et al., 1980). 
As to this critique, we do agree with HTM when they assert that "inside 

the qp-s, each question a defines (as its equivalence class) a certain proposi- 
tion a" (Hadjisavvas et al., 1980), but it must be stressed that it does no t - -  
exclusively--define this proposition a; rather, in a certain very specific situ- 
ation, a question may be privileged to determine a peculiar proposition 
[for instance, as a consequence of (L1) Theorem 4.1, question azr[3, a~a, 
/3eb, can be chosen to determine a c~ b], but, in accordance with Foulis and 
Randall (1984), "the equivalence class (a ~ b) is determined by any question 
?/in (a c~ b), and ), needs not have the form azcfl." 

As a consequence of Theorem ~--3, HTM set the following: 

Illustrative Challenge: 
- - L e t  then a~s ~ and b~.L~ a be, respectively, two propositions defined by two 

chosen questions a and/3. 
- -Each  pair of propositions from 5 a defines a corresponding product proposition 

belonging to L, ~ 
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[(i) form anti using (a3), Section 3, and the usual rules of formation of wffs] 
so in particular one can write a ^ b~C~r 

[(ii) form [a~rfl]~ using (D4), which, by (D5), belongs to &o; owing to (L1), 
Theorem 3.1, we have that [azrfl]~ =a  A b]. 

--Finally, Axiom C asserts the existence inside ~ of the compatible complement 
p' of any proposition p ~ ,  hence, also in particular, according to Axiom C, 
( an  b ) ' ~  does exist. 
[(iii) By (C1) Axiom C a compatible complement ( a n  b)' for a r~ b exists in 
~ ;  moreover, by (C2) Axiom C, at least a question yeQ exists such that 
y~(anb)  and ?'Ve(a c~ b)'.] 

--But according to Theorem Y3 none of the negations (affr v of the questions 
aircflj, aiea, fljeb does belong to ( a n  b)'. 

Our challenge then is the following one: 

1. Try to specify syntactically inside the qp-s at least one question belonging 
to (ac~b)' ( . . . ) .  

2. Specify the apparatus corresponding to this question (Hadjisavvas et al., 
1980). 

The answer to point 1 of the challenge is given by (i)-(iii) in the above 
square brackets, which are obtained by a pure syntactic construction inside 
JP qp-s formalized theory. Since the (C2) of Axiom C postulates the exist- 
ence of at least one question 7 such that 7~(a c~ b) and 7V~(a c~ b)', which 
is supposed, according to (BC1) of Section 2, to correspond to a well-defined 
"measuring apparatus," point 2 of this challenge is devoid of sense. The 
very content of (C2) Axiom C consists just in "postulating the existence 
of the measurement y (and of the corresponding apparatus)" (Foulis and 
Randall, 1984) and axioms are introduced in a formal system just to postu- 
late something. 

Remark 2. An exemplification of the above "illustrative challenge" can 
be given using Hilbertian localization questions of Section 4.2. 

Let a=F(v,)~[E(O, 1)]~ =a  and fl=F(v2)~[E(2, 3)]~ =b be the two 
Hilbertian localization propositions/q(0, 1) --"the particle is (quantistically) 
localized in (0, 1)" and /q(2, 3)="the particle is (quantistically) localized 
in (2, 3)," unsharply tested by the Hilbertian localization questions F(Vl), 
&(v,) = (0, 1), and F(v2),  A ] ( v 2 ) =  (2, 3), respectively. 

The product Hilbertian localization question, according to (4, 5), is 

= ~ (X~o(v,;~ AoO, j ~ ) ( '  ) F(Vl)rle(v2) ' 

[where A0(vJ w A0(vzy_~(-~, 0] w [1, 2] u [3, + ~ ) ,  whose corresponding 
Hilbertian localization proposition is am b=[F(v,)l-IF(v2)]~ =O, i.e., the 
absurd proposition. 

The compatible complement of am b = O  exists and is (ac~b)'= 
a ' w b ! = l ;  indeed, (C1) O n l = O  and O v l = l ;  (C2) E ( ~ ) = ( ) ~ O  and 
E(~Z~) '= E ( ~  c) = ~ el .  [where 7 = E(~)] .  
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But 

(F( v,)rIF( v@'= (1 - ~Z((Ao(v,~c ~ ~o(v2~c~) ( ' )  

and none of these Hilbertian localization questions belongs to 1, in agree- 
ment with Theorem J 3 .  

In conclusion, from Theorem ~'-3 one  does not show that Piron's Axiom 
C is devoid of any interpretation; this theorem shows only the impossibility 
of constructing proposition (a c~ b)' starting from negations (atcfl) v of any 
(arcfl)~(a n b), and nothing else. 

7. THE PHYSICAL CONTENT OF AXIOMS C AND AI 

In Section 6.2 we saw that, contrary to HTM's opinion, syntactically a 
method of construction of the "product proposition" according to (i)-(iii) 
(square brackets of the illustrative challenge) is available inside JP qp-s. 

On the other hand, people working in QP might have sufficient physical 
motivations to reject the physical content, i.e., the very existence, of question 
7 in (C2), for instance, because it does not "correspond to a fundamental 
physical fact" (Hadjisavvas and Thieffine, 1984). In the present section we 
will try to give a content to Axiom C, from a physical point of view, in such 
a way that a "semantical definition" of product proposition, e.g., the one 
illustrated in Remark 2 for Hilbertian localization questions, is given in 
terms of unsharp tests of propositions; this semantical definition is "in con- 
sistency with the semantic content [i.e., unsharp measurement of proposi- 
tions] assigned to the corresponding descriptive elements [i.e., Hilbertian 
fuzzy questions in Q ( ~ ) / ( g ( J g  )] from the quantum mechanical formalism 
[i.e., the standard orthodox Hilbert space quantum mechanics in ~ ,  as 
outlined in Section 4]" (Hadjisawas et aI., 1980). 

Thus we now introduce the following axiom, which will turn out to be 
stronger than Piron's Axiom C. 

Axiom CC. Va~ Q, 3Vlae Q such that the following statements hold: 

(dq-1) 
(dq-2) 
(dq-3) 
(dq-4) 

a ~ D a  
/3 ~ [] a implies F(x, t)  =~ F(x, [] a) 
[2]a~ Dfl implies [ ] a =  [2It 
7 ~ ( [] a) v implies F(x, 7) =*" F(x, ( [] a) v) 

Questions Da, for a running in Q, are said to be ideal questions and their 
collection is denoted by 

E : - - - { D a :  a s @ }  
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Remark 1. For any a~Q, the element f-]a~Q assured by Axiom CC 
is unique; indeed, if ([]a) '  and (Na)" are two such elements, then from 
(dq-1) it follows that (Na)'..~([]a)" and from this and (dq-3) we get that 
(E]a) '= (Vqa)". Note that the following are immediate consequences of 
Axiom CC: 

(vae Q), ([a]~ = [Sa]~) 

(va~ Q), (E2Da= �9  

(Ve6g), ( D e = e )  

(7.1) 

(7.2) 

(7.3) 

In the case of a JP qp-s with Axiom CC, the syntactic scheme of the 
qp-s can be endowed with another 1-argument functor N: Q~-~ Q, "neces- 
sity," and the formal structure of qp-s can be summarized in the following 
way: 

Of course, 

L~p cc) = (S, Q, ~(Q) ;/ ,  v, re, [] ; T)  

a~fl implies D a =  Dfl 

which allows a one-to-one correspondence between propositions and ideal 
questions, pictured in the following graph: 

Q~a 
+D 

IDa]~ ~ r  - g ~ [3a (7.4) 

For any question a~ Q, let a = [a] ~ ~ be the proposition generated by 
a; then, (1) owing to (dq-1), the ideal question D a  belongs to a, (2) it 
minimalizes, owing to (dq-2), the randomness of the certainly-false domains 
of all other questions from a, and, (3) owing to (dq-3) it is the unique 
question from a with these properties. 

Thus, for these reasons, [] a is said to be the exact representative of the 
proposition a, while all other questions from a are called fuzzy representa- 
tives of the same proposition a. In conclusion, [ ]a  is the (unique) ideal 
question sharply testing proposition a (and all other questions from a test 
the latter in an unsharp way). 

The role of condition (dq-4) is linked to the following results. 

Theorem 7.1. The mapping 

Z/%--~, a=[a]~ ~a':=[(E]a)V]~ 
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is such that the structure 

(~e, o, ___, ' )  

is an orthocomplemented complete lattice, which satisifes the JP condition 
C. Indeed,we have: 

(C1) a A a ' = O a n d a v a ' = l .  
(C2) F-laea and (~a)~ ea '. 

In a certain sense, Axiom CC gives the positive content of Axiom C, consist- 
ing in describing a peculiar physical entity in which any proposition, and so 
the corresponding property, can be tested by exactly one exact (or sharp) 
measurement, besides a suitable collection of fuzzy (or unsharp) questions 
which test with noise and imprecision the same property. 

Referring to the scheme of Section 5, and taking into account (7.4), we 
have the following complete diagram which summarizes the most important 
behaviors of JP qp-s with Axiom CC: 

o~f'-real 
Q- , Q ( H )  

[]; +D 

~~ 
5e---g , ~ ( ~ ) - ~ ( ~ ) - L # ( ~ )  

As one can see from the above diagram, the Hilbert space model of qp- 
s we outlined in Section 4 satisfies Axiom CC since, owing to (4.1), for any 
Hilbertian proposition [F]_, characterized by the common closed subspaces 
MI(F) of preparations (nonzero vectors) in which the proposition 
is true, the orthogonal projection E~a,(n exists and satisfies conditions 
(dq-1)-(dq-4). 

In this way, orthogonal projections from s  are the ideal or exact 
questions of our Hilbert space model of qp-s; they sharply test the Hilbertian 
propositions, whereas all other Hilbertian questions from Q(~f ) / g ( ~  ) are 
representatives of fuzzy or unsharp measurements of the involved 
propositions. 

Remark 2. As an application, let us consider the La(R) Hilbertian local- 
ization questions. For any Borel subset A of N we have the Hilbertian 
localization proposition a(A)= [E(A)] ~ with corresponding quantum local- 
ization property/q(A) = "the particle'is localized in A" [recall that, owing to 
(7.3), []E(A) = E(A)]. The question E(A) sharply tests the proposition a(A) ; 
it is the unique Hilbertian sharp localization question which tests this propo- 
sition; all the Hilbertian localization questions F(v), with A1 (v) = A, test in an 
unsharp way the same proposition. We can introduce the necessity mapping, 
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whose restriction to the Hilbertian localization questions acts in the follow- 
ing way: 

F( v) ~-. Z]F( v) = E( A,( v) ) 

As to the orthocomplementation, we have that if 

a(A) = [E(A)]_ = [F(v)] ~, with Al(V) = A 

Then 

a(A)'=[E(AC)I~=[F(v*)]~, with AI(V~) ~--" A c 

Of course, 

F(v)ea(A) and F(v)'ea(A)' iff Al(v) =A and A0(v)=A c 

and this happens, iff F(v)--E(A). This result agrees with the aforegoing 
discussion about Axiom C and Assumption U: a(A) and a(A)' are compat- 
ible complements tested by the sharp localization questions E(A) and 
E(A)' = E(A~), respectively, but for any F(v)~a(A), with v~ZA, we have that 
F( v)' r A )'. 

7.1. Pure State Property and Axiom A1 

We now discuss the role of  Axiom A1 with respect to the pure state 
property. 

Definition 7.1. A qp-s is said to have the pure states property (briefly, 
to be a PS qp-s) iff the following axiom holds. 

Axiom PSI .  For  every xeS, s o m e  xpeSp exists such that o-(x)_c o'(Xp). 
Axiom PS2. For  every x~S, 

N 
o'(x) ~_ o'(Xp) 

Let us comment briefly on Axiom PS1 from a physical point of view. 
As seen in (D20), any pure preparation Xp is a preparation such that o(Xp) is 
maximal in Y~, ordered by set inclusion, so that a(Xp) embodies a "maximum 
amount of  information" about the actual properties of  the physical system 
prepared in Xp. Axiom PS1 states that for any preparation x the set o-(x) is 
contained in at least one (in general not unique) of  these maximal subsets 
of propositions (or actual properties). 

Thus, whenever Xp is a pure preparation, the available amount of infor- 
mation coincides with a maximum of information which can be attributed 
to any individual sample of the physical system prepared in Xp. A position 
of  this kind is found in Jauch and Piron (1969): ' %  state of a system is the 
set cr of  all true propositions of the system [i.e., (D 16)] (- �9 .). We may think 
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of the state as containing the maximal amount of information that is possible 
concerning an individual system [i.e., the state is a pure state; see (D18)]. 
Thus we shall postulate that two states o"1 and 02 cannot be subsets of one 
another." 

Remark 3. As a consequence of the latter postulate, in the JP approach 
all states are pure and thus it is correct to assert that: ~ shall in fact 
assume that every individual system, be it an isolated system or a member 
of a statistical ensemble, is in a definite state as defined above" (Jauch and 
Piron, 1969). 

In our modified approach, according to Definition 7.1, we consider also 
the possibility of nonpure states. 

If preparation x is not pure, the available amount of information is 
only a part of the maximal amount of information embodied in every maxi- 
mal subset 0-(xp)EEp which contains 0-(x); but it must be stressed that the 
knowledge of 0-(x) alone does not allow any privileged choice among these 
maximal subsets. We observe that one can claim (or assume) that also in this 
case to every individual sample of the physical system prepared according to 
x one of o'(xp), i.e., a pure state, containing 0-(x) can be attributed in any 
case; yet, this assumption sounds rather metaphysical. 

Remark 4. Note that if a pure state is attributed to any individual 
sample of a physical system prepared according to x, in the case in which x 
is not pure, this state may change from one sample to another and must not 
be confused with the information which is actually available about the 
sample [which is the same for every sample and is summarized in 0-(x)]. 

To be precise, if x is any nonpure preparation whose corresponding 
state is 0-(x), the latter being collection of all the actual properties of any 
single sample prepared according to x (whether these properties have been 
measured), a certain number of pure states 

Zp(X) : =  {0-(Xp) : Xp~]F.p, 0-(X) ~ 0-(Xp) } 

is associated to x. 
If {ij : j6J} is a set of individual samples prepared according to x, then 

to any of such sample ij a pure state o~iJ)(Xp)eEp(X) can be attributed. But 
from the fact that the set Ep(X) of all pure states associated to x is not a 
singleton, this state may change with the choice of sample ij, in agreement 
with the following interpretation of the JP assertion: "it is important to 
distinguish the [pure] state [0-(iJ)(Xp)~Ep(X)] of a [sample 6 of the] system 
[prepared in x] from the amount of information [0-(x)t available about the 
[same sample ij of the] system" (Jauch and Piron, 1969). 
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Let us consider now the more relevant consequences of Axiom PS, 
whose proofs are in Cattaneo et al. (1989). 

Proposition 7.1. In any PS pq-s, Axiom A~ follows from PS1. Moreover, 
from PS2 we get the set of  all pure states is order determining the set of  
propositions, i.e., recalling (D26), 

a~_b iff Vup~Ep, d(Up, a) implies ~(Up, b) 

8. PRE-HILBERT MODEL OF WEAK QP-S 

We conclude by presenting a pre-Hilbert model of  a question-proposi- 
tion system, in which basic specific Axiom 3 is restricted to any finite number 
of questions only; moreover, neither Axiom CC nor thus Axiom C of the 
JP approach holds. This pre-Hilbert JP-like mathematical structure is a 
model of  a qp-s describing a physical entity in which some of the JP strong 
axioms can be weakened if some physical motivations lead one to reject 
them. 

Let Y be a complex, in general separable, pre-Hilbert space. Define 
S(5~ : = 50/{_0}, the set of  all preparations, and Q(50) := {F: 50 ~ 5 ~ [linear, 
O_< F <  ~ }, the set of  all questions of  a pre-Hilbert realization of  a qp-s, 
where the certain question is the identity ~ ; the inverse question of  F is F ' =  

- F ;  the product of F, and F2, denoted by FIFIF2, is �89 +F2). 
Analogously to the Hilbert space case, for any Fe  Q(50) we introduce 

the subspaces MI (F ) :=  Ker(~ - F )  and Mo(F)= Ker(F)  ; the certainly-true 
domain and the certainly-false domain of  F are defined as S,(F):= M,(F)/  
{_0} and So(F):=Mo(F)/{O}, respectively. We define the binary relations 
T~,( ~t, F) r gte M,( F) and F~( V/, F) ~, ~te Mo( F), interpreted as "question 
F is true (resp., false) in preparation g." 

It is straightforward to verify that we have constructed a pre-Hilbert 
realization of  a question-proposition formal language with Axiom 3 
restricted to pairs of  questions only. In particular, F <  G iff M~(F)~ Mt(G) 
and so F~G iff M,(F)=MI(G). 

The set of all propositions is identifiable with the set of  all exact or A_- 
closed subspaces of  50 (Cattaneo and Marino, 1986; Dvurecenskij, 1988), 
Jr = { M ~  50: M =  M• which is an orthocomplemented complete lat- 
tice, which is not orthomodular (otherwise 50 would be a Hilbert space). To 
any proposition [F] ~ = {F: F ~  G} we can associate the unique certainly- 
true domain S,(F), the satisfaction domain of  the proposition. 

The structure (50, o~(50); ~, ', rl;  t> does not satisfy Axiom CC (unless 
50 is a Hilbert space) since a linear pre-Hilbertian question Fe  Q(50 ) admits 
the ideal question VI(F) iff D ( F )  is an orthogonal projection, and this 
occurs iff M~(F) is a splitting subspace, i.e., iff M,(F)~M,(F)  • 50 (every 
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splitting subspace is an exact subspace, too; the converse characterizing 
Hilbert spaces). 

Therefore, in the pre-Hilbert space case we have some propositions 
which are of thefirst kind, precisely those propositions [F l ~ for which M~ (F) 
is a splitting subspace and the corresponding ideal question is the orthogonal 
projection EM~(~ and some propositions [G]_ which are of the second kind, 
corresponding to a subspace M~(G) which is exact but not splitting. 

In conclusion, the strict pre-Hilbert space example i~s a realization of a 
qp-s which does not satisfy Axiom CC; the set of all propositions is an 
orthocomplemented complete lattice which is not orthomodular. Only the 
first kind of propositions are measured by ideal questions, represented by 
orthogonal projections, and the set of all first-kind propositions is an ortho- 
modular orthoposet. The Hilbert space case corresponds to a pre-Hilbert 
qp-s with Axiom CC; in this case the necessity modal-like operator associates 
to any question F the ideal question, i.e., the orthogonal projection 
EM,(F), which exactly tests the property [F] ~. 

Example 8.1. Let us consider the pre-Hilbert space b~ of rapidly 
decreasing test functions (i.e., infinitely differentiable complex functions 
which, together with all their derivatives, vanish as I x ] ~  oe faster than 
the reciprocal of any polynomial). For any infinitely differentiable classical 
localization mapping v: R ~ [0, 1 ], the linear operator F(v) : 5e (R) ~ 5e(~), 
gt~ v. ~tis well defined and represents an Y(R)-localization question, which 
localizes particles in the Borel subset A~ (v). These pre-Hilbertian localization 
questions are of the second kind because the pre-Hilbert space 5e(N) is not 
invariant with respect to the linear operator 

V ~ Z~(v) " 

9. CONCLUDING REMARK 

As a final consideration, we hope that those with sufficient metatheoret- 
ical or empirical reasons to reject some specific axioms of the theory can 
suggest how to modify the structure in some essential points (or to reject 
the whole theory). But, in any case, further discussions should make an 
appropriate use of the involved terms avoiding critiques based on 
misunderstandings. 
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